In [1]:
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
In [2]:
disaster_df = pd.read_csv('fema_data/DisasterDeclarationsSummaries_IL_Floods_Severe_Storms.csv')
print(disaster_df.dtypes)
print(disaster_df.shape)
disaster_df.head()
disasterNumber int64
ihProgramDeclared int64
iaProgramDeclared int64
paProgramDeclared int64
hmProgramDeclared int64
state object
declarationDate object
disasterType object
incidentType object
title object
incidentBeginDate object
incidentEndDate object
disasterCloseOutDate object
declaredCountyArea object
placeCode float64
hash object
lastRefresh object
dtype: object
(563, 17)
Out[2]:
disasterNumber
ihProgramDeclared
iaProgramDeclared
paProgramDeclared
hmProgramDeclared
state
declarationDate
disasterType
incidentType
title
incidentBeginDate
incidentEndDate
disasterCloseOutDate
declaredCountyArea
placeCode
hash
lastRefresh
0
115
0
1
1
1
IL
1961-05-27T00:00:00 +00:00
DR
Flood
FLOODS & TORNADOES
1961-05-27T00:00:00 +00:00
1961-05-27T00:00:00 +00:00
1963-10-14T00:00:00 +00:00
NaN
NaN
9cd00a749158f95077a8b74edfc4833c
2015-08-04T01:43:17 +00:00
1
78
0
1
1
1
IL
1957-06-22T00:00:00 +00:00
DR
Flood
FLOODS
1957-06-22T00:00:00 +00:00
1957-06-22T00:00:00 +00:00
1959-03-01T00:00:00 +00:00
NaN
NaN
4ea87225ea5a7e3e8cf33c038cb087e3
2015-08-04T01:43:17 +00:00
2
262
0
1
1
0
IL
1969-06-06T00:00:00 +00:00
DR
Flood
FLOODING
1969-06-06T00:00:00 +00:00
1969-06-06T00:00:00 +00:00
1972-04-25T00:00:00 +00:00
Pike (County)
99149.0
f0e0ac27aaa16a92750bc738327344d4
2016-08-30T15:07:51 +00:00
3
262
0
1
1
0
IL
1969-06-06T00:00:00 +00:00
DR
Flood
FLOODING
1969-06-06T00:00:00 +00:00
1969-06-06T00:00:00 +00:00
1972-04-25T00:00:00 +00:00
Mercer (County)
99131.0
0638ec8faade048f38c5d68c776dcae3
2016-08-30T15:07:54 +00:00
4
262
0
1
1
0
IL
1969-06-06T00:00:00 +00:00
DR
Flood
FLOODING
1969-06-06T00:00:00 +00:00
1969-06-06T00:00:00 +00:00
1972-04-25T00:00:00 +00:00
Whiteside (County)
99195.0
167a4e9fe33c295f91a9d8806c50bc4e
2016-08-30T15:07:52 +00:00
In [6]:
disaster_df['incidentBeginDate'] = pd.to_datetime(disaster_df['incidentBeginDate'])
disaster_recent = disaster_df.loc[disaster_df['incidentBeginDate'] >= '2000-01-01'].copy()
disaster_recent = disaster_recent.loc[disaster_recent['declaredCountyArea'] == 'Cook (County)'].copy()
disaster_recent.shape
Out[6]:
(4, 17)
In [7]:
disaster_recent
Out[7]:
disasterNumber
ihProgramDeclared
iaProgramDeclared
paProgramDeclared
hmProgramDeclared
state
declarationDate
disasterType
incidentType
title
incidentBeginDate
incidentEndDate
disasterCloseOutDate
declaredCountyArea
placeCode
hash
lastRefresh
477
1935
1
0
0
1
IL
2010-08-19T14:00:00 +00:00
DR
Severe Storm(s)
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
NaN
Cook (County)
99031.0
b9d2c6945b4f1dfcb6ced3f51e4ae50b
2016-08-30T15:08:20 +00:00
485
1800
1
1
1
1
IL
2008-10-03T18:30:00 +00:00
DR
Severe Storm(s)
SEVERE STORMS AND FLOODING
2008-09-13 08:00:00
2008-10-05T00:00:00 +00:00
NaN
Cook (County)
99031.0
dc37a07e247b6dd19da48cc9400c6997
2016-08-30T15:08:21 +00:00
494
1729
0
0
1
1
IL
2007-09-25T20:40:00 +00:00
DR
Severe Storm(s)
SEVERE STORMS AND FLOODING
2007-08-20 15:30:00
2007-08-31T00:00:00 +00:00
2015-12-07T00:00:00 +00:00
Cook (County)
99031.0
cb84f79b7e21df73b44e09b869e0918e
2016-08-30T15:08:18 +00:00
558
4116
1
0
0
1
IL
2013-05-10T18:15:00 +00:00
DR
Flood
SEVERE STORMS, STRAIGHT-LINE WINDS, AND FLOODING
2013-04-16 09:37:00
2013-05-05T00:00:00 +00:00
NaN
Cook (County)
99031.0
4b2c489628eac118e5cc56f9f642b8dd
2016-08-30T15:08:38 +00:00
In [21]:
#disaster_recent.to_csv('fema_data/cook_disasters_since_2000.csv',index=False)
disaster_merge = disaster_recent[['disasterNumber', 'declarationDate', 'title', 'incidentBeginDate', 'incidentEndDate']]
disaster_merge
Out[21]:
disasterNumber
declarationDate
title
incidentBeginDate
incidentEndDate
477
1935
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
485
1800
2008-10-03T18:30:00 +00:00
SEVERE STORMS AND FLOODING
2008-09-13 08:00:00
2008-10-05T00:00:00 +00:00
494
1729
2007-09-25T20:40:00 +00:00
SEVERE STORMS AND FLOODING
2007-08-20 15:30:00
2007-08-31T00:00:00 +00:00
558
4116
2013-05-10T18:15:00 +00:00
SEVERE STORMS, STRAIGHT-LINE WINDS, AND FLOODING
2013-04-16 09:37:00
2013-05-05T00:00:00 +00:00
In [9]:
housing_owners = pd.read_csv('fema_data/HousingAssistanceOwners_IL_Cook_Flood_Storm.csv')
print(housing_owners.shape)
print(housing_owners.dtypes)
housing_owners.head()
(788, 26)
disasterNumber int64
incidentType object
state object
county object
city object
zipCode int64
validRegistrations int64
averageFemaInspectedDamage int64
totalInspected int64
totalDamage int64
noFemaInspectedDamage int64
femaInspectedDamageBetween1And10000 int64
femaInspectedDamageBetween10001And20000 int64
femaInspectedDamageBetween20001And30000 int64
femaInspectedDamageGreaterThan30000 int64
approvedForFemaAssistance int64
totalApprovedIhpAmount int64
repairReplaceAmount int64
rentalAmount int64
otherNeedsAmount int64
approvedBetween1And10000 int64
approvedBetween10001And25000 int64
approvedBetween25001AndMax int64
totalMaxGrants int64
hash object
lastRefresh object
dtype: object
Out[9]:
disasterNumber
incidentType
state
county
city
zipCode
validRegistrations
averageFemaInspectedDamage
totalInspected
totalDamage
...
totalApprovedIhpAmount
repairReplaceAmount
rentalAmount
otherNeedsAmount
approvedBetween1And10000
approvedBetween10001And25000
approvedBetween25001AndMax
totalMaxGrants
hash
lastRefresh
0
1935
Severe Storm(s)
IL
Cook (County)
BARTLETT
60133
1
6024
1
6024
...
6024
5565
0
459
1
0
0
0
a95a6ad3fab63e55cd9b357bce5677b0
2014-12-12T01:20:24 +00:00
1
1935
Severe Storm(s)
IL
Cook (County)
BLUE ISLAND
60406
302
1532
293
448908
...
512054
356465
124239
31350
184
4
2
1
53c2edbb5d7c0d859ce9f5d7f99a9d10
2014-12-12T01:20:24 +00:00
2
1935
Severe Storm(s)
IL
Cook (County)
BURR RIDGE
60527
5
4695
5
23476
...
26120
21050
2480
2590
4
1
0
0
e5633eaf08a3b5862b35eb104c111f03
2014-12-12T01:20:24 +00:00
3
1935
Severe Storm(s)
IL
Cook (County)
CAULMET CITY
60409
1
313
1
313
...
233
0
0
233
1
0
0
0
8cdaa614b3b5b9ff5f4a83d6957e0838
2014-12-12T01:20:24 +00:00
4
1935
Severe Storm(s)
IL
Cook (County)
CHIAGO
60637
1
0
1
0
...
0
0
0
0
0
0
0
0
e695139db13f5e3ba025c875dfafa7b2
2014-11-20T15:20:20 +00:00
5 rows × 26 columns
In [14]:
housing_owners['city'].unique()
Out[14]:
array(['BARTLETT', 'BLUE ISLAND', 'BURR RIDGE', 'CAULMET CITY', 'CHIAGO',
'CHICAGI', 'CHGO', 'CHICAGO', 'CHICAGOI', 'CHICGAGO', 'CICERO',
'COUNTRYSIDE', 'DOLTON ', 'EVANSTON', 'FRANKFORT', 'HARVEY',
'HINSDALE', 'LAGRANGE', 'LYNWOOD', 'MAYWOOD', 'MERRINOTTE PARK',
'NORTH LAKE', 'OLYMPIA FIELDS', 'PARK FOREST', 'RICHTON PARK',
'ROSELLE', 'ALSIP', 'BRAODVIEW', 'BELLLWOOD', 'CALUMET CITY',
'CGICAGO', 'CHICAAGO', 'CHICAGIO', 'CHICAGOP', 'CRETE', 'ELGIN',
'CHICGO', 'EVERGREEN', 'GHICAGO', 'HARWOOD HEIGHTS',
'HOFFMAN ESTATES', 'LA GRANGE PARK', 'LYONS', 'MAYWWOD',
'MIDLOTHIAN', 'NORTH RIVERSIDE', 'ORLAND HILLS', 'PARKFOREST',
'RIVERDALDE', 'BERWYN', 'CALUMET PK', 'BURNHAM ', 'CHICAGGO',
'CHICATO', 'COUNTRYCLUB HILLS', 'DOLTON', 'FOREST VIEW', 'HARVE',
'HILLSIDE', 'LOMBARD', 'LA GRANGE', 'OAK PARK', 'MELRROSE PARK',
'PALOS PARK', 'NORTHBROOK', 'ROLLING MEADOWS', 'ADDISON',
'BEDFORD PARK', 'BOLINGBROOK', 'CALUMET', 'CENTRAL STICKNEY',
'CHICAGO IL', 'CHICGAO', 'CRESTWOOD', 'EAST HAZELCREST',
'FRANKLIN PARK', 'HODGKINS', 'MERRIONETTE PARK',
'LA GRANGE HIGHLANDS', 'MAYWOOD IL', 'NORTHLAKE', 'OLYMPIAFIELDS',
'RICHTON PK', 'SAUK VILLAGE', 'ARLINGTON HEIGHTS', 'BELLWOOD',
'BROOKFIELD', 'CALUMET PARK', 'CHCIAGO', 'CHGO HTS', 'CHICAG',
'CHICAO', 'CNTRY CLB HLS', 'DESPLAINES', 'ELMHURST', 'GLENVIEW',
'FLOSSMOOR', 'HAZEL CREST', 'HOMEWOOD', 'LEMONT', 'MARKHAM',
'MELROSE PARK', 'MOUNT PROSPECT', 'OAK LAWN', 'PALATINE',
'PLAINFIELD', 'RIVER GROVE', 'CALUMETCITY', 'BROADVIEW', 'CHCAGO',
'ARGO', 'CHICAHO', 'CICERO IL', 'DES PLAINES', 'ELK GROVE VILLAGE',
'EVERGREEN PK', 'HAZEL', 'LANSING', 'HOMETOWN', 'LYONS AVE.',
'MORTON GROVE', 'OAK FOREST', 'ORLAND PARK', 'PHOENIX',
'RIVER FOREST', 'BUFFALO GROVE', 'CHHICAGO', 'BELLWOOE',
'CHICAGO HEIGHTS', 'CONUNTRYCLUB', 'ELMWOOD PARD', 'DIXMOOR',
'FORD EIGHTS', 'GLENWOOD', 'HAZELCREST', 'JEFFERSON PK', 'LEYDEN',
'MELROSEPARK', 'NILES', 'OAKLAWN', 'RIVER ROVE', 'POSEN', 'BURNHAM',
'BARRINGTON', 'CHICASGO', 'BERKELEY', 'COUNTRY CLUB HILLS',
'ELMWOODPARK', 'HARDWOOD HEIGHTS', 'FOREST PARK', 'MELROSE PK',
'JUSTICE', 'LISLE', 'NORRIDGE', 'PALOS HILLS', 'ROBBINS', 'ALSLIP',
'CHICAGO RIDGE', 'BELLWODD', 'CHICACO', 'BRIDGEVIEW', 'GLENCOE',
'ELK GROVE', 'LAGRANGE PARK', 'EVERGREEN PARK', 'MC COOK',
'CHIC AGO', 'PARK RIDGE', 'N RIVERSIDE', 'RIVERDALE', 'HARWOOD HTS',
'ARLINGTON HTS', 'BURBANK', 'BELWOOD', 'JOLIET', 'OAK LAWN IL',
'FORD HEIGHTS', 'MATTESON', 'PROSPECT HEIGHTS', 'CHICAGO HTS',
'ELMWOOD PARK', 'LINCOLNWOOD', 'PALOS HEIGHTS', 'CICEERO',
'HANOVER PARK', 'RIVERSIDE', 'COUNTRY CLUB HILL', 'HICKORY HILLS',
'NO RIVERSIDE', 'SAUKVILLAGE', 'WILLOW SPRINGS', 'THORNTON',
'SOUTH CHICAGO HEIGHTS', 'SCHAUMBURG', 'SOUTHHOLLAND',
'TINLEY PARK', 'WORTH', 'UNIVERSITY PK', 'STEGER', 'SHOREWOOD',
'WESTCHESTER', 'WESTERN SPRINGS', 'SUMMIT', 'STONE PARK',
'SAUK VILLIAGE', 'WILMETTE', 'SKOKIE', 'SOUTH HOLLAND',
'UNIVERSITY PARK', 'STICKNEY', 'STREAMWOOD', 'SCHILLER PARK',
'SUMMIT ARGO', 'SO CHICAGO HTS', 'WHEELING', 'GOLF', 'OLYMPIA FLDS',
'DFB', 'ROSEMONT', 'C.C.HILLS', 'NORTHFIELD', 'DOLTONE',
'C. C. HILLS', 'INVERNESS', 'ST CHARLES', 'CHICAGO HEIGHTS',
'CTRY CLB HLS', 'MARKHAMIL', 'KENILWORTH', 'MT PROSPECT',
'S CHICAGO HEIGHTS', 'SOUTH BARRINGTON', 'WINNETKA', 'CHUCAGO',
'OAKPARK', 'SCHILLER PK', 'INDIAN HEAD PARK', 'LA GRANGE PK',
'S CHICAGO HTS', 'CHIHAGO', 'LANISNG', 'SYCAMORE', 'BROOKFI',
'EAST HAZEL CREST', 'MATTERSON', 'COUNTRYCLUB HILL'], dtype=object)
In [28]:
# There are some creative misspellings of Chicago, making a list of them and just pulling those rows
chi_names = ['CHIAGO', 'CHICAGI', 'CHGO', 'CHICAGO', 'CHICAGOI', 'CHICGAGO', 'CGICAGO',
'CHICAAGO', 'CHICAGIO', 'CHICAGOP', 'CHICGO', 'GHICAGO', 'CHICAGGO','CHICATO',
'CHICAGO IL', 'CHICGAO', 'CHCIAGO', 'CHICAG', 'CHICAO', 'CHCAGO', 'CHICAHO',
'CHHICAGO', 'CHICASGO', 'CHICACO', 'CHIC AGO', 'CHUCAGO', 'CHIHAGO']
chi_housing_owners = housing_owners.loc[housing_owners['city'].isin(chi_names)].copy()
chi_housing_owners['city'] = 'Chicago'
print(chi_housing_owners.shape)
chi_housing_owners.head()
(230, 26)
Out[28]:
disasterNumber
incidentType
state
county
city
zipCode
validRegistrations
averageFemaInspectedDamage
totalInspected
totalDamage
...
totalApprovedIhpAmount
repairReplaceAmount
rentalAmount
otherNeedsAmount
approvedBetween1And10000
approvedBetween10001And25000
approvedBetween25001AndMax
totalMaxGrants
hash
lastRefresh
4
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60637
1
0
1
0
...
0
0
0
0
0
0
0
0
e695139db13f5e3ba025c875dfafa7b2
2014-11-20T15:20:20 +00:00
5
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60641
1
1829
1
1829
...
0
0
0
0
0
0
0
0
155f92c09a904ffeb04efc36c64617ec
2014-12-12T01:20:24 +00:00
6
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60628
1
2634
1
2634
...
1888
1888
0
0
1
0
0
0
78be3ad69148dc33a6cde1c94cbd3900
2014-12-12T01:20:24 +00:00
7
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60468
1
0
1
0
...
0
0
0
0
0
0
0
0
c22c84732b8eeead7c4917322d61239f
2014-11-20T15:20:20 +00:00
8
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60613
5
4376
5
21878
...
20496
20496
0
0
2
1
0
0
52ea04f86159e6434c4db44fd8cb4bae
2014-12-12T01:20:24 +00:00
5 rows × 26 columns
In [29]:
chi_housing_recent = chi_housing_owners.merge(disaster_merge, on='disasterNumber', how='right')
print(chi_housing_recent.shape)
chi_housing_recent.head()
(231, 30)
Out[29]:
disasterNumber
incidentType
state
county
city
zipCode
validRegistrations
averageFemaInspectedDamage
totalInspected
totalDamage
...
approvedBetween1And10000
approvedBetween10001And25000
approvedBetween25001AndMax
totalMaxGrants
hash
lastRefresh
declarationDate
title
incidentBeginDate
incidentEndDate
0
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60637.0
1.0
0.0
1.0
0.0
...
0.0
0.0
0.0
0.0
e695139db13f5e3ba025c875dfafa7b2
2014-11-20T15:20:20 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
1
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60641.0
1.0
1829.0
1.0
1829.0
...
0.0
0.0
0.0
0.0
155f92c09a904ffeb04efc36c64617ec
2014-12-12T01:20:24 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
2
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60628.0
1.0
2634.0
1.0
2634.0
...
1.0
0.0
0.0
0.0
78be3ad69148dc33a6cde1c94cbd3900
2014-12-12T01:20:24 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
3
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60468.0
1.0
0.0
1.0
0.0
...
0.0
0.0
0.0
0.0
c22c84732b8eeead7c4917322d61239f
2014-11-20T15:20:20 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
4
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60613.0
5.0
4376.0
5.0
21878.0
...
2.0
1.0
0.0
0.0
52ea04f86159e6434c4db44fd8cb4bae
2014-12-12T01:20:24 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
5 rows × 30 columns
In [30]:
housing_renters = pd.read_csv('fema_data/HousingAssistanceRenters_IL_Cook_Flood_Storm.csv')
print(housing_renters.shape)
print(housing_renters.dtypes)
housing_renters.head()
(614, 23)
disasterNumber int64
incidentType object
state object
county object
city object
zipCode int64
validRegistrations int64
totalInspected int64
totalInspectedWithNoDamage int64
totalWithModerateDamage int64
totalWithMajorDamage int64
totalWithSubstantialDamage int64
approvedForFemaAssistance int64
totalApprovedIhpAmount int64
repairReplaceAmount int64
rentalAmount int64
otherNeedsAmount int64
approvedBetween1And10000 int64
approvedBetween10001And25000 int64
approvedBetween25001AndMax int64
totalMaxGrants int64
hash object
lastRefresh object
dtype: object
Out[30]:
disasterNumber
incidentType
state
county
city
zipCode
validRegistrations
totalInspected
totalInspectedWithNoDamage
totalWithModerateDamage
...
totalApprovedIhpAmount
repairReplaceAmount
rentalAmount
otherNeedsAmount
approvedBetween1And10000
approvedBetween10001And25000
approvedBetween25001AndMax
totalMaxGrants
hash
lastRefresh
0
1935
Severe Storm(s)
IL
Cook (County)
BROOKFIELD
60513
29
28
28
0
...
54698
0
37078
17620
13
1
0
0
e939ce76a82945a1b4d0ecc593834bc7
2014-11-20T15:20:38 +00:00
1
1935
Severe Storm(s)
IL
Cook (County)
BELLWOOD
60153
1
1
1
0
...
7594
0
2030
5564
1
0
0
0
bb53044f3f1daf6c877324c6c5ba185e
2014-11-20T15:20:38 +00:00
2
1935
Severe Storm(s)
IL
Cook (County)
CHCAGO
60651
1
1
1
0
...
459
0
0
459
1
0
0
0
0c2848a1b3d37ca216e40d7266d70007
2014-11-20T15:20:38 +00:00
3
1935
Severe Storm(s)
IL
Cook (County)
CHICAGO
60641
124
121
121
0
...
384907
0
220266
164641
60
9
1
1
2c28933c6fcfbd4a651ce9948460ccfd
2014-11-20T15:20:38 +00:00
4
1935
Severe Storm(s)
IL
Cook (County)
CHICAGO
60609
939
903
903
0
...
1935289
0
1189333
745956
514
32
5
1
45fd7be16116532bcb712b0196adfbd2
2014-11-20T15:20:38 +00:00
5 rows × 23 columns
In [31]:
housing_renters['city'].unique()
Out[31]:
array(['BROOKFIELD', 'BELLWOOD', 'CHCAGO', 'CHICAGO', 'CRETE', 'CHICOAG',
'EVANSTON', 'CHGOHTS', 'HANOVER PARK', 'HINES', 'LAGRANGE', 'LYONS',
'MELROSE PARK', 'OAKPARK', 'NORTHLAKE', 'PARKFOREST', 'RIVER GROVE',
'SCHILLER PARK', 'SUMMIT', 'WILMETTE', 'BROADVIEW', 'CCICERO',
'CHGO', 'CHICAO', 'COUNTTRY CLUB HILLS', 'ELMWOOD PARK', 'GLENVIEW',
'HILLSIDE', 'OAK PARK', 'WESTERN SPRINGS', 'LOMBARD', 'RIVERDALE',
'SCHAUMBURG', 'NORTHBROOK', 'STONE PARK', 'JUSTICE', 'PARK FOREST',
'CHICGO', 'LA GRANGE', 'GLENWOOD', 'CENTRAL STICKNEY',
'ELMWOODPARK', 'CRESTWOOD', 'LYNWOOD', 'WILLOW SPRINGS',
'NORTH CHICAGO', 'STREAMWOOD', 'S CHICAGO HGTS', 'RIVER FOREST',
'ALSIP', 'BERKELEY', 'CHCIAGO', 'BURHAM', 'CHICAGO APT B',
'DES PLAINES', 'CICERO', 'HARVEY', 'HOFFMAN EST',
'LAKE IN THE HILLS', 'MARKHAM', 'MELROSE PSRK', 'N RIVERSIDE',
'ORLAND HILLS', 'ROBBINS', 'PEMBROKE TOWNSHIP', 'SKOKIE',
'THORNTON', 'BELWOOD', 'BURBANK', 'CHICAAGO', 'CICERIO', 'CHICAGO ',
'LA GRANGE PARK', 'HODGKINS', 'MELROSEPARK', 'RIVERSIDE',
'PARK RIDGE', 'NORTH RIVERSIDE', 'SUMMIT ARGO', 'OLYMPIA FIELDS',
'WORTH', 'ARLINGTON HEIGHTS', 'BERKLEY', 'CALUMET', 'CICERO NW',
'LANSING', 'POSEN', 'DOLTON', 'MAWOOD', 'SAUK VILAGE', 'FLOSSMOOR',
'MIDLOTHIAN', 'SOUTH HOLLAND', 'HAZEL CREST', 'OAK LAWN',
'UNIVERSITY PARK', 'CHICAGO HTS', 'HOFFMAN ESTATES', 'ORLAND PARK',
'BURNHAM', 'CHICAGO HEIGHTS', 'DIXMOOR', 'CHG', 'EVERGREEN PARK',
'HARWOOD HEIGHTS', 'MERRIONETTE PARK', 'OAK FOREST',
'SOUTH CHICAGO HEIGHTS', 'PHOENIX', 'MATTESON', 'TINLEY PARK',
'ROSELLE', 'BARTLETT', 'BLUE ISLAND', 'CALUMET CITY',
'ELK GROVE VILLAGE', 'HICKORY HILLS', 'CHICAGOIL', 'HOMEWOOD',
'FOREST PARK', 'MAYWOOD', 'COUNTRYCLUB HILLS', 'LEMONT', 'PALATINE',
'NILES', 'STEGER', 'RIVER DALE', 'WESCTCHESTER', 'BARRINGTON',
'BERWYN', 'COUNTRY CLUB HILLS', 'CHICAGO IL', 'ELGIN',
'FORD HEIGHTS', 'HAZELCREST', 'HOMETOWN', 'LANSINGING',
'MOUNT PROSPECT', 'OAKLAWN', 'RICHTON PARK', 'SAUK VILLAGE',
'UNIVERSITY PK', 'SOUTHHOLLAND', 'BEDFORD PARK', 'BRIDGEVIEW',
'CALUMET PARK', 'CHICAGO RIDGE', 'COUNTRYSIDE', 'ELMHURST',
'FRANKLIN PARK', 'MAYWOOOD', 'NORRIDGE', 'LINCOLNWOOD',
'IND HEAD PK', 'PALOS HILLS', 'HILLSDE', 'STICKNEY', 'WESTCHESTER',
'ASHLAND AVE', 'CTRY CLB HLS', 'SAULK VILLIAGE', 'SAUKVILLAGE',
'WHEELING', 'LANCING', 'NORTHFIELD', 'STREAMWWOD', 'CALUMETCITY',
'MERRIONETT PK', 'MORTON GROVE', 'COUNRTY CLUB HILLS',
'MT PROSPECT', 'PROSPECT HEIGHTS', 'ROSEMONT', 'FOREST PK',
'ROLLING MEADOWS', 'CALUMET CITY ', 'BENSENVILLE', 'BUFFALO GROVE',
'GLENCOE', 'HARWOOD HTS', 'EVERGREEN PK', 'MC COOK', 'WINNETKA',
'EVANSTON ', 'DES PLAINES APT GS', 'FOREST VIEW', 'S CHICAGO HTS',
'PEORIA'], dtype=object)
In [32]:
# Fix misspellings again
chi_names = ['CHCAGO', 'CHICAGO', 'CHICOAG', 'CHGO', 'CHICAO', 'CHICGO', 'CHCIAGO', 'CHICAGO APT B', 'CHICAAGO', 'CHICAGO ',
'CHICAGOIL', 'CHICAGO IL']
chi_housing_renters = housing_renters.loc[housing_renters['city'].isin(chi_names)].copy()
chi_housing_renters['city'] = 'Chicago'
print(chi_housing_renters.shape)
chi_housing_renters.head()
(178, 23)
Out[32]:
disasterNumber
incidentType
state
county
city
zipCode
validRegistrations
totalInspected
totalInspectedWithNoDamage
totalWithModerateDamage
...
totalApprovedIhpAmount
repairReplaceAmount
rentalAmount
otherNeedsAmount
approvedBetween1And10000
approvedBetween10001And25000
approvedBetween25001AndMax
totalMaxGrants
hash
lastRefresh
2
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60651
1
1
1
0
...
459
0
0
459
1
0
0
0
0c2848a1b3d37ca216e40d7266d70007
2014-11-20T15:20:38 +00:00
3
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60641
124
121
121
0
...
384907
0
220266
164641
60
9
1
1
2c28933c6fcfbd4a651ce9948460ccfd
2014-11-20T15:20:38 +00:00
4
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60609
939
903
903
0
...
1935289
0
1189333
745956
514
32
5
1
45fd7be16116532bcb712b0196adfbd2
2014-11-20T15:20:38 +00:00
5
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60827
148
141
141
0
...
115366
0
55140
60226
57
2
0
0
7001b15646afa6bc79214521253ef5c5
2014-11-20T15:20:38 +00:00
6
1935
Severe Storm(s)
IL
Cook (County)
Chicago
60630
11
11
11
0
...
2234
0
0
2234
1
0
0
0
23567187d20f65ae2ba4bb0849a91e0a
2014-11-20T15:20:38 +00:00
5 rows × 23 columns
In [33]:
chi_rent_recent = chi_housing_renters.merge(disaster_merge, on='disasterNumber', how='right')
print(chi_rent_recent.shape)
chi_rent_recent.head()
(179, 27)
Out[33]:
disasterNumber
incidentType
state
county
city
zipCode
validRegistrations
totalInspected
totalInspectedWithNoDamage
totalWithModerateDamage
...
approvedBetween1And10000
approvedBetween10001And25000
approvedBetween25001AndMax
totalMaxGrants
hash
lastRefresh
declarationDate
title
incidentBeginDate
incidentEndDate
0
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60651.0
1.0
1.0
1.0
0.0
...
1.0
0.0
0.0
0.0
0c2848a1b3d37ca216e40d7266d70007
2014-11-20T15:20:38 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
1
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60641.0
124.0
121.0
121.0
0.0
...
60.0
9.0
1.0
1.0
2c28933c6fcfbd4a651ce9948460ccfd
2014-11-20T15:20:38 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
2
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60609.0
939.0
903.0
903.0
0.0
...
514.0
32.0
5.0
1.0
45fd7be16116532bcb712b0196adfbd2
2014-11-20T15:20:38 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
3
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60827.0
148.0
141.0
141.0
0.0
...
57.0
2.0
0.0
0.0
7001b15646afa6bc79214521253ef5c5
2014-11-20T15:20:38 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
4
1935.0
Severe Storm(s)
IL
Cook (County)
Chicago
60630.0
11.0
11.0
11.0
0.0
...
1.0
0.0
0.0
0.0
23567187d20f65ae2ba4bb0849a91e0a
2014-11-20T15:20:38 +00:00
2010-08-19T14:00:00 +00:00
SEVERE STORMS AND FLOODING
2010-07-19 14:36:00
2010-08-07T11:00:00 +00:00
5 rows × 27 columns
In [34]:
# chi_housing_recent.to_csv('chi_housing_assistance_owners.csv',index=False)
# chi_rent_recent.to_csv('chi_housing_assistance_renters.csv',index=False)
In [35]:
# Not sure if this dataset is relevant, ignoring for now
public_assistance = pd.read_csv('fema_data/PublicAssistanceApplicants_IL_Flood_Storm.csv')
print(public_assistance.shape)
print(public_assistance.dtypes)
public_assistance.head()
(2152, 11)
disasterNumber int64
incidentType object
applicantId object
state object
applicantName object
addressLine1 object
addressLine2 object
city object
zipCode object
hash object
lastRefresh object
dtype: object
Out[35]:
disasterNumber
incidentType
applicantId
state
applicantName
addressLine1
addressLine2
city
zipCode
hash
lastRefresh
0
1278
Severe Storm(s)
085-0020E-00
Illinois
JO-CARROLL ELECTRIC COOPERATIVE
NaN
NaN
NaN
NaN
0f50aaab48b75fffc38a364d28b51a1f
2014-11-23T01:12:52 +00:00
1
1278
Severe Storm(s)
085-00B3E-00
Illinois
SCALES MOUND COMMUNITY UNIT SCHOOL DISTRICT 211
NaN
NaN
NaN
NaN
e7ca25223bef88b4d80a07f65a9f363e
2014-11-23T01:12:52 +00:00
2
1278
Severe Storm(s)
085-48359-00
Illinois
MENOMINEE, VILLAGE OF
NaN
NaN
NaN
NaN
0acb98871bf2c2b2ed8f164fb7a9fa7b
2014-11-23T01:12:52 +00:00
3
1278
Severe Storm(s)
085-00B27-00
Illinois
MENOMINEE TOWNSHIP ROAD DISTRICT
NaN
NaN
NaN
NaN
c3e2d8993f24bbced059a7b466758a35
2014-11-23T01:12:52 +00:00
4
1278
Severe Storm(s)
085-00B44-00
Illinois
WOODBINE TOWNSHIP ROAD DISTRICT
NaN
NaN
NaN
NaN
b0a25ed1022ef24ae17ecddf0257c045
2014-11-23T01:12:52 +00:00
In [36]:
reg_data = pd.read_csv('fema_data/RegistrationIntakeIndividualsHouseholdPrograms_IL_Cook_Flood_Storm.csv')
print(reg_data.shape)
print(reg_data.dtypes)
reg_data.head()
(877, 21)
disasterNumber int64
incidentType object
state object
county object
city object
zipCode int64
totalValidRegistrations int64
validCallCenterRegistrations int64
validWebRegistrations int64
validMobileRegistrations int64
ihpReferrals int64
ihpEligible int64
ihpAmount float64
haReferrals int64
haEligible int64
haAmount float64
onaReferrals int64
onaEligible int64
onaAmount float64
hash object
lastRefresh object
dtype: object
Out[36]:
disasterNumber
incidentType
state
county
city
zipCode
totalValidRegistrations
validCallCenterRegistrations
validWebRegistrations
validMobileRegistrations
...
ihpEligible
ihpAmount
haReferrals
haEligible
haAmount
onaReferrals
onaEligible
onaAmount
hash
lastRefresh
0
4116
Flood
IL
Cook (County)
BEDFORD PARK
60501
1
0
1
0
...
0
0.00
1
0
0.00
0
0
0.00
bd7e19a0c8dac7872a90d5a28bf03735
2014-11-23T02:38:03 +00:00
1
4116
Flood
IL
Cook (County)
BROOKFIELD
60513
425
121
285
19
...
338
1147160.02
390
327
1063029.85
317
95
84130.17
1a4c6b1bed0af9764a881a4c5b47ea0a
2014-11-23T02:38:03 +00:00
2
4116
Flood
IL
Cook (County)
CHGO
60644
1
0
1
0
...
0
0.00
1
0
0.00
0
0
0.00
7b94c8cc82eaebb8a56647758ae70fb8
2014-11-23T02:38:03 +00:00
3
4116
Flood
IL
Cook (County)
CHICAGO
60614
7
2
5
0
...
3
2936.20
6
1
888.26
7
2
2047.94
0649825eca55c3ae07678b2afd7ea2d9
2014-11-23T02:38:03 +00:00
4
4116
Flood
IL
Cook (County)
CHICAGO
60624
1175
753
349
73
...
692
2255862.26
1107
553
1650428.98
990
396
605433.28
c6e8298ee56b528cf98adb00bcac7639
2015-03-02T19:03:16 +00:00
5 rows × 21 columns
In [37]:
reg_data['city'].unique()
Out[37]:
array(['BEDFORD PARK', 'BROOKFIELD', 'CHGO', 'CHICAGO', 'CHICAGO RIDGE',
'DESPLAINES', 'EVANSTON', 'HARWOOD HTS', 'FRANKLIN PARK',
'HOMEWOOD', 'LANSING', 'MAYWOOD', 'NORRIDGE', 'OAK PARK',
'PALOS PARK', 'RIVER GROVE', 'SCHAUMBURG', 'STEGER', 'TINLEY PARK',
'BELLWOOD', 'BUFFALO GROVE', 'CHIHAGO', 'GLENCOE', 'HAZEL CREST',
'INDIAN HEAD PARK', 'LEMONT', 'MC COOK', 'NORTHBROOK', 'OAKPARK',
'PARK FOREST', 'RIVERSIDE', 'S CHICAGO HTS', 'UNIVERSITY PARK',
'STICKNEY', 'BENSENVILLE', 'BURBANK', 'CHUCAGO',
'DES PLAINES APT GS', 'GLENVIEW', 'HAZELCREST', 'INVERNESS',
'LINCOLNWOOD', 'MELROSE PARK', 'NORTHFIELD', 'OLYMPIA FIELDS',
'PARK RIDGE', 'ROBBINS', 'SCHILLER PARK', 'STONE PARK',
'WESTCHESTER', 'ADDISON', 'BERKELEY', 'BURNHAM', 'CICERO',
'EVANSTON ', 'DIXMOOR', 'HICKORY HILLS', 'JUSTICE', 'LYNWOOD',
'NORTHLAKE', 'ORLAND HILLS', 'PEORIA', 'ROLLING MEADOWS',
'SCHILLER PK', 'STREAMWOOD', 'WESTERN SPRINGS', 'ALSIP', 'BERWYN',
'BURR RIDGE', 'COUNTRYCLUB HILL', 'DOLTON', 'EVERGREEN PARK',
'GLENWOOD', 'HILLSIDE', 'KENILWORTH', 'LYONS', 'MERRIONETTE PARK',
'NORTH RIVERSIDE', 'ORLAND PARK', 'PHOENIX', 'ROSELLE', 'SKOKIE',
'SUMMIT', 'WHEELING', 'ARLINGTON HEIGHTS', 'BRIDGEVIEW',
'CALUMET CITY ', 'COUNTRYSIDE', 'ELGIN', 'FLOSSMOOR', 'HARVEY',
'HINSDALE', 'LA GRANGE HIGHLANDS', 'MARKHAM', 'MORTON GROVE',
'OAK FOREST', 'PROSPECT HEIGHTS', 'SOUTH BARRINGTON', 'PALATINE',
'SUMMIT ARGO', 'SAUK VILLAGE', 'WILMETTE', 'ARGO', 'BLUE ISLAND',
'CALUMET CITY', 'COUNTRY CLUB HILLS', 'EAST HAZEL CREST',
'EVERGREEN PK', 'HANOVER PARK', 'LA GRANGE', 'MIDLOTHIAN',
'N RIVERSIDE', 'POSEN', 'ROSEMONT', 'WILLOW SPRINGS', 'BROADVIEW',
'CALUMETCITY', 'CRESTWOOD', 'ELK GROVE VILLAGE', 'FORD HEIGHTS',
'HODGKINS', 'LA GRANGE PARK', 'MATTERSON', 'MOUNT PROSPECT',
'OAK LAWN', 'RICHTON PARK', 'SOUTH CHICAGO HEIGHTS', 'SYCAMORE',
'WINNETKA', 'BARRINGTON', 'CALUMET PARK', 'CHICAGO HEIGHTS',
'DES PLAINES', 'ELMHURST', 'FOREST PARK', 'HOFFMAN ESTATES',
'LA GRANGE PK', 'MT PROSPECT', 'OAKLAWN', 'MATTESON',
'PALOS HEIGHTS', 'RIVERDALE', 'SOUTH HOLLAND', 'THORNTON', 'WORTH',
'BROOKFI', 'BARTLETT', 'CHICAGO HTS', 'ELMWOOD PARK', 'FOREST VIEW',
'HARWOOD HEIGHTS', 'HOMETOWN', 'NILES', 'LANISNG', 'PALOS HILLS',
'RIVER FOREST', 'SOUTHHOLLAND', 'MERRIONETT PK', 'C. C. HILLS',
'STREAMWWOD', 'C.C.HILLS', 'CHICGO', 'DFB', 'MARKHAMIL',
'SAUKVILLAGE', 'CALUMET', 'CNTRY CLB HLS', 'GOLF', 'SAULK VILLIAGE',
'COUNRTY CLUB HILLS', 'DOLTONE', 'LANCING', 'BOLINGBROOK',
'ST CHARLES', 'OLYMPIA FLDS', 'ARLINGTON HTS', 'CHICAGO HEIGHTS',
'CRETE', 'FOREST PK', 'UNIVERSITY PK', 'ASHLAND AVE',
'CTRY CLB HLS', 'S CHICAGO HEIGHTS', 'CGICAGO', 'CHICAG',
'CHHICAGO', 'CHCAGO', 'CHIAGO', 'ALSLIP', 'BELLLWOOD', 'BURHAM',
'CHCIAGO', 'BERKLEY', 'BELLWODD', 'CHICAGGO', 'BURNHAM ', 'CHICAGI',
'CAULMET CITY', 'CHG', 'CHICAAGO', 'CHICAGIO', 'BRAODVIEW',
'CALUMET PK', 'BELWOOD', 'CHGOHTS', 'CENTRAL STICKNEY', 'BELLWOOE',
'CCICERO', 'CHGO HTS', 'CHICACO', 'CHIC AGO', 'CHICAGO IL',
'CHICATO', 'CICEERO', 'CICERO NW', 'ELK GROVE', 'JOLIET',
'LANSINGING', 'MELRROSE PARK', 'MAYWOOOD', 'CHICAGO ', 'CHICAGOP',
'CHICGAO', 'CONUNTRYCLUB', 'HOFFMAN EST', 'LEYDEN', 'NORTH LAKE',
'SAUK VILLIAGE', 'SO CHICAGO HTS', 'CHICAHO', 'LISLE', 'RIVER ROVE',
'CHICAGOI', 'CHICAO', 'HARVE', 'LAGRANGE PARK', 'LOMBARD',
'MELROSEPARK', 'OLYMPIAFIELDS', 'EAST HAZELCREST', 'IND HEAD PK',
'MELROSE PK', 'NO RIVERSIDE', 'RIVERDALDE', 'WESCTCHESTER',
'CHICASGO', 'CHICOAG', 'CICERO IL', 'EVERGREEN', 'GHICAGO', 'HINES',
'JEFFERSON PK', 'MAYWOOD IL', 'MELROSE PSRK', 'OAK LAWN IL',
'PEMBROKE TOWNSHIP', 'RIVER DALE', 'SAUK VILAGE', 'SHOREWOOD',
'CHICAGOIL', 'CHICGAGO', 'CICERIO', 'HAZEL', 'LYONS AVE.',
'MAYWWOD', 'MERRINOTTE PARK', 'NORTH CHICAGO', 'PLAINFIELD',
'CHICAGO APT B', 'COUNTRY CLUB HILL', 'ELMWOOD PARD', 'FORD EIGHTS',
'LAGRANGE', 'ELMWOODPARK', 'COUNTRYCLUB HILLS', 'HARDWOOD HEIGHTS',
'HILLSDE', 'MAWOOD', 'COUNTTRY CLUB HILLS', 'DOLTON ', 'FRANKFORT',
'LAKE IN THE HILLS', 'PARKFOREST', 'RICHTON PK', 'S CHICAGO HGTS'], dtype=object)
In [38]:
# Cleaning up Chicago names again
# Fix misspellings again
chi_names = ['CHGO', 'CHICAGO', 'CHIHAGO', 'CHUCAGO', 'CHICGO', 'CGICAGO', 'CHICAG', 'CHHICAGO', 'CHCAGO', 'CHIAGO', 'CHCIAGO',
'CHICAGGO', 'CHICAGI', 'CHG', 'CHICAAGO', 'CHICAGIO', 'CHICACO', 'CHIC AGO', 'CHICAGO IL', 'CHICATO', 'CHICAGO ',
'CHICAGOP', 'CHICGAO', 'CHICAHO', 'CHICAGOI', 'CHICAO', 'CHICASGO', 'CHICOAG', 'CHICAGOIL', 'CHICGAGO', 'CHICAGO APT B']
chi_reg = reg_data.loc[reg_data['city'].isin(chi_names)].copy()
chi_reg['city'] = 'Chicago'
print(chi_reg.shape)
chi_reg.head()
(257, 21)
Out[38]:
disasterNumber
incidentType
state
county
city
zipCode
totalValidRegistrations
validCallCenterRegistrations
validWebRegistrations
validMobileRegistrations
...
ihpEligible
ihpAmount
haReferrals
haEligible
haAmount
onaReferrals
onaEligible
onaAmount
hash
lastRefresh
2
4116
Flood
IL
Cook (County)
Chicago
60644
1
0
1
0
...
0
0.00
1
0
0.00
0
0
0.00
7b94c8cc82eaebb8a56647758ae70fb8
2014-11-23T02:38:03 +00:00
3
4116
Flood
IL
Cook (County)
Chicago
60614
7
2
5
0
...
3
2936.20
6
1
888.26
7
2
2047.94
0649825eca55c3ae07678b2afd7ea2d9
2014-11-23T02:38:03 +00:00
4
4116
Flood
IL
Cook (County)
Chicago
60624
1175
753
349
73
...
692
2255862.26
1107
553
1650428.98
990
396
605433.28
c6e8298ee56b528cf98adb00bcac7639
2015-03-02T19:03:16 +00:00
5
4116
Flood
IL
Cook (County)
Chicago
60636
2571
1
584
135
...
1539
3448754.61
2423
1237
2751573.28
2068
710
697181.33
dbf38848961f88ee280ab76643e34bc7
2015-03-02T19:03:16 +00:00
6
4116
Flood
IL
Cook (County)
Chicago
60659
154
75
70
9
...
103
169962.97
140
97
152721.00
110
31
17241.97
4b8febc4bdd1081d41d68e6afdcfb8d5
2014-11-23T02:38:03 +00:00
5 rows × 21 columns
In [39]:
chi_reg_recent = chi_reg.merge(disaster_merge, on='disasterNumber', how='right')
print(chi_reg_recent.shape)
chi_reg_recent.head()
(258, 25)
Out[39]:
disasterNumber
incidentType
state
county
city
zipCode
totalValidRegistrations
validCallCenterRegistrations
validWebRegistrations
validMobileRegistrations
...
haAmount
onaReferrals
onaEligible
onaAmount
hash
lastRefresh
declarationDate
title
incidentBeginDate
incidentEndDate
0
4116.0
Flood
IL
Cook (County)
Chicago
60644.0
1.0
0.0
1.0
0.0
...
0.00
0.0
0.0
0.00
7b94c8cc82eaebb8a56647758ae70fb8
2014-11-23T02:38:03 +00:00
2013-05-10T18:15:00 +00:00
SEVERE STORMS, STRAIGHT-LINE WINDS, AND FLOODING
2013-04-16 09:37:00
2013-05-05T00:00:00 +00:00
1
4116.0
Flood
IL
Cook (County)
Chicago
60614.0
7.0
2.0
5.0
0.0
...
888.26
7.0
2.0
2047.94
0649825eca55c3ae07678b2afd7ea2d9
2014-11-23T02:38:03 +00:00
2013-05-10T18:15:00 +00:00
SEVERE STORMS, STRAIGHT-LINE WINDS, AND FLOODING
2013-04-16 09:37:00
2013-05-05T00:00:00 +00:00
2
4116.0
Flood
IL
Cook (County)
Chicago
60624.0
1175.0
753.0
349.0
73.0
...
1650428.98
990.0
396.0
605433.28
c6e8298ee56b528cf98adb00bcac7639
2015-03-02T19:03:16 +00:00
2013-05-10T18:15:00 +00:00
SEVERE STORMS, STRAIGHT-LINE WINDS, AND FLOODING
2013-04-16 09:37:00
2013-05-05T00:00:00 +00:00
3
4116.0
Flood
IL
Cook (County)
Chicago
60636.0
2571.0
1.0
584.0
135.0
...
2751573.28
2068.0
710.0
697181.33
dbf38848961f88ee280ab76643e34bc7
2015-03-02T19:03:16 +00:00
2013-05-10T18:15:00 +00:00
SEVERE STORMS, STRAIGHT-LINE WINDS, AND FLOODING
2013-04-16 09:37:00
2013-05-05T00:00:00 +00:00
4
4116.0
Flood
IL
Cook (County)
Chicago
60659.0
154.0
75.0
70.0
9.0
...
152721.00
110.0
31.0
17241.97
4b8febc4bdd1081d41d68e6afdcfb8d5
2014-11-23T02:38:03 +00:00
2013-05-10T18:15:00 +00:00
SEVERE STORMS, STRAIGHT-LINE WINDS, AND FLOODING
2013-04-16 09:37:00
2013-05-05T00:00:00 +00:00
5 rows × 25 columns
In [40]:
#chi_reg_recent.to_csv('fema_data/chi_registration_intake.csv',index=False)
In [43]:
chi_reg_recent['zipCode'].unique()
Out[43]:
array([ 60644., 60614., 60624., 60636., 60659., 60646., 60290.,
60615., 60625., 60637., 60647., 60660., 60604., 60616.,
60626., 60638., 60649., 60661., 60630., 60605., 60617.,
60628., 60639., 60651., 60666., 60607., 60618., 60629.,
60640., 60652., 60678., 60609., 60620., 60631., 60642.,
60654., 60803., 60608., 60619., 60641., 60653., 60707.,
60610., 60621., 60632., 60643., 60655., 60827., 60612.,
60633., 60622., 60656., 60613., 60623., 60634., 60657.,
60645., 60477., 60686., 60479., 60706., 60104., 60606.,
60131., 60627., 60155., 60411., 60443., 60611., 60601.,
60468., 60020., 60684., 66039., 60693., 60658., 60714.,
60805., 60673., 66017., 66019., 60689., 69619., 60804.,
60663., nan])
In [46]:
reg_zip = chi_reg_recent.groupby(['zipCode'])['totalValidRegistrations'].sum()
reg_zip = reg_zip.sort_values(ascending=False)
reg_zip.plot(kind='bar')
Out[46]:
<matplotlib.axes._subplots.AxesSubplot at 0xa6b59b0>
In [49]:
reg_zip_df = pd.DataFrame(reg_zip).reset_index()
reg_zip_df.head()
Out[49]:
zipCode
totalValidRegistrations
0
60628.0
15787.0
1
60620.0
13474.0
2
60619.0
13295.0
3
60617.0
11404.0
4
60629.0
10323.0
In [50]:
reg_zip_df.to_csv('housing_assistance_reg_by_zip.csv',index=False)
In [ ]:
Content source: NORCatUofC/rain
Similar notebooks: